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Abstract. A method for constructing stable Proper Orthogonal Decomposition (POD)/Galer-
kin reduced order models (ROMs) for compressible flow is described. The proposed model
reduction technique differs from the approach taken in manyapplications in that the Galerkin
projection step is applied to the continuous system of partial differential equations (PDEs),
rather than a semi-discrete representation of these equations. It is demonstrated that the inner
product used to define the Galerkin projection is intimatelytied to the stability of the resulting
model. For linearized conservation laws such as the linearized compressible Euler and lin-
earized compressible Navier-Stokes equations, a symmetrytransformation leads to a stable
formulation for the inner product. Preservation of stability for the discrete implementation
of the Galerkin projection is made possible using piecewise-smooth finite element bases, and
a weak enforcement of the boundary conditions. The stability and accuracy of the proposed
model reduction approach is studied in the context of two test cases: the problem of an in-
viscid pressure pulse in a uniform base flow, and a viscous laminar cavity problem. For the
second inherently non-linear test case, the non-linear dynamics of the flow are captured in the
POD reduced basis modes, but not in the equations projected onto these modes, as the ROM
equations are based on a local linearization of the full non-linear flow equations.

Keywords: Reduced order model (ROM); proper orthogonal decomposition (POD)/Galerkin
projection; compressible Navier-Stokes equations; energy method; numerical stability.

1. INTRODUCTION

Many engineering problems that are of interest in present-day applications require the
simulation of complex systems possessing many degrees of freedom (DOFs). One area that
presents many tough challenges for scientific computing tools because of the large systems
that arise is computational fluid dynamics (CFD). Despite improved algorithms and increas-
ingly sophisticated computational tools, “high-fidelity”CFD models for three-dimensional
(3D) unsteady flows at high Reynolds and Mach numbers are often too computationally ex-
pensive to be used in a design or analysis setting.



In recent years, reduced order modeling has proven to be a powerful tool that can
enable real or near-real time analysis in areas that have traditionally relied on high-fidelity
modeling approaches. The basic idea of model reduction is toreplace a large system associ-
ated with a high-fidelity simulation by a system that is much smaller, but that is nonetheless
capable of capturing, at least approximately, the essential dynamics of the original system.
Examples of reduced order model (ROM) approaches proposed within the past decade, each
with its own inherent strengths, are the reduced basis method [15, 24, 25], balanced truncation
[27, 28], balanced proper orthogonal decomposition (POD) [29], moment-matching [30], and
goal-oriented ROMs [16]. The attractiveness of ROMs in predictive settings has prompted
improvements in model-reduction methodologies for applications such as flow controller de-
sign [17, 21, 42], shape optimization [22], and aeroelasticstability analysis [18, 23]. It has
also motivated the development of approaches for adapting pre-computed ROMs to changes
in physical and/or modeling parameters [17, 21, 18, 23, 19, 20].

In any application, it is important for a ROM to preserve certain crucial properties of
the original system. This is especially the case if the ROM’sintended use is in a predictive set-
ting. Many model reduction techniques in fluid mechanics andother applications are derived
from the proper orthogonal decomposition(POD)/Galerkin projection approach. In this ap-
proach, a reduced basis is computed by performing a singularvalue decomposition (SVD) on
a matrix containing as its columns a small number of snapshots extracted from a high-fidelity
simulation. The set of governing partial differential equations (PDEs), or a semi-discrete rep-
resentation of these equations, is then projected onto these reduced basis (POD) modes. The
result of this procedure is a dynamical system of ordinary differential equations (ODEs), from
which the ROM solution is obtained.

The ROM dynamical system may be viewed as an alternative discretization of the gov-
erning PDEs. As such, it is desired to possess the fundamental numerical properties required
of any numerical scheme, namely stability, consistency andconvergence. For a compressible
flow POD/Galerkin model, general results regarding any of these properties are lacking [16].
Stability in particular can be an issue. A ROM constructed for the equations of compressible
flow using the classical POD/Galerkin approach might be stable for a given number of modes,
but unstable for other choices of basis size [16, 1, 2, 3, 8]. This leads to obvious practical
limitations of the model: the ROM solution can blow up in finite time.

The aim of the current work is to present a model reduction approach based on Galerkin
projection that is guaranteed to result in a stable ROM for the equations of compressible flow.
At the heart of this stable formulation is the idea that a ROM must be constructed to retain
a proper energy balance [31, 32, 28]. Mathematically, the energy is expressed as an inner
product. In [1, 2, 3, 8], it was demonstrated by the first author, Kalashnikova,et al. that
the stability of the Galerkin projection step of a ROM is closely tied to the stability of the
resulting model. In these earlier works, attention was focussed on the linearized compress-
ible Euler equations. An energy stability analysis carriedout for Galerkin methods applied to
these equations resulted in the construction of an inner product that guarantees certain stabil-
ity bounds satisfied by the ROM. ROMs developed using this approach were guaranteed, by
construction, to remain stable not only for the POD basis, but for anychoice of reduced basis.

In the present work, the earlier analysis [1, 2, 3, 8] is extended to the linearized



compressible Navier-Stokes equations. It is demonstratedthat the key ingredient to a sta-
ble Galerkin ROM for this equation set is once again a proper choice of inner product for
the Galerkin projection step of the model reduction. The appropriate inner product for this
equation set is derived, and a stability-preserving implementation of the proposed ROM is de-
veloped. As a first step towards a stable and efficient model reduction approach for non-linear
compressible flow problems, the viability of a ROM constructed for the full non-linear com-
pressible Navier-Stokes equations based on a local linearization of these equations is studied.
In this approach, the non-linear dynamics of the flow are captured in the POD reduced basis
modes, but not in the equations projected onto these modes. The method is hence similar in
flavor to the method of localized linear reductions [34], butunlike other non-linear model re-
duction approaches based on non-linear equations (gappy POD method [33], “best points” in-
terpolation method (BPIM) [36], Gauss-Newton with Approximated Tensors (GNAT) method
[35]).

The remainder of this paper is organized as follows. The equations of viscous com-
pressible flow are given in Section 2. The POD/Galerkin approach to model reduction is
reviewed in Section 3. A method for constructing a Galerkin ROM for the linearized com-
pressible Navier-Stokes that is guaranteed to satisfy somea priori stability bounds is described
in Section 4. In Section 5, the performance of the proposed model reduction approach is eval-
uated on two test cases: the problem of an inviscid pressure pulse in a steady base flow, and a
viscous laminar cavity problem. Comparisons are made to ROMs constructed using the clas-
sical Galerkin/POD approach, which lacks ana priori stability guarantee. Conclusions are
offered in Section 6.

2. EQUATIONS FOR COMPRESSIBLE FLOW

The Navier-Stokes equations are the fundamental PDEs for describing viscous fluid
flow. In 3D, the compressible form of these equations can be written as [13]:
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where
D

dt
≡

∂

∂t
+ u · ∇. (2)

In (1), uT ≡
(

u1, u2, u3

)
is the fluid velocity vector,T is the fluid temperature, andρ is

the fluid density. The symbolsµ andλ are the so-called Lamé constants, assumed to satisfy
Stokes’ hypothesis:

λ +
2

3
µ = 0. (3)

The symbolκ is the thermal diffusivity, and the symbolCv is the specific heat at constant
volume, assumed herein to be constant.



An important dimensionless parameter associated with (1) is the Reynolds number,
denoted byRe and defined as:

Re ≡
ρ0U0L

µ0

, (4)

whereρ0, µ0 andU0 are reference values for the density, viscosity and velocity respectively,
and L is a reference length scale for the domain of the problem considered. In the limit
Re → ∞ (or the case whenµ = λ = κ = 0), the equations (1) reduce to the (inviscid)
compressible Euler equations, a quasi-linear hyperbolic system. For finite values ofRe, the
system is known as incompletely parabolic [12].

Whenµ, λ, κ 6= 0, that is, when viscosity is prevalent in the flow, appropriate solid-
wall boundary conditions for the equations (1) are the

no-slip boundary condition: u = 0, on∂ΩW ,
adiabatic wall boundary condition:∇T · n = 0, on∂ΩW ,

(5)

where∂ΩW denotes a solid-wall boundary of the domainΩ on which the equations (1) are
posed, andnT ≡

(
n1, n2, n3

)
denotes the unit normal to∂ΩW .

Whenµ = λ = κ = 0, that is, when the flow is assumed to be inviscid, so that the
equations (1) reduce to the compressible Euler equations, an appropriate solid-wall boundary
is the

no-penetration boundary condition:u · n = 0, on∂ΩW . (6)

In numerical approximations to (1), the computational domain Ω on which these equa-
tions are solved is by construction finite, in contrast to theinfinite physical space on which an
initial boundary value problem (IBVP) for (1) may be defined.It is often desirable to prescribe
boundary conditions on the artificial far-field boundary of the computational domain, denoted
by ∂ΩF . An appropriate far-field boundary condition is one that will suppress the reflection of
waves from the outer computational domain boundary. This can be accomplished by setting
the components ofq′ corresponding to characteristic waves traveling intoΩ to zero [1, 8].

2.1. Linearized Compressible Navier-Stokes Equations

The model reduction approach presented in the present work is based on a local
linearization of the full non-linear compressible Navier-Stokes equations (1). In general,
the linearized compressible Navier-Stokes equations are appropriate when a compressible
fluid system can be described by viscous, small-amplitude perturbations about a steady-state
mean (or base) flow. To derive the linearized counterpart of the system (1), the state vector
qT ≡

(
u1, u2, u3, T, ρ

)
∈ R

5 is decomposed into two parts: a steady meanq̄(x) and
an unsteady time-varying fluctuationq′(x, t). Mathematically,

q(x, t) ≡ q̄(x) + q′(x, t), (7)

wherexT ≡
(

x1, x2, x3

)
is the position vector. Linearizing the full equations (1) around

the steady mean (or base) stateq̄, the following equations for the fluctuationq′ are obtained1

[12, 13]:
q′

,t + Aiq
′

,i − [Kijq
′

,j],i = 0, (8)

1From this point forward, the so-called Eisenstein notation(implied summation on repeated indices) is em-
ployed.



where
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
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0 ū1 0 0 0
0 0 ū1 0 0
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and
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K31 ≡
1

ρ̄









0 0 µ 0 0
0 0 0 0 0
λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0









, K32 ≡
1
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In deriving (8), the ideal gas law
p = ρRT, (15)

whereR is the universal gas constant, has been employed. In addition, the identityCv = R
γ−1

,
whereγ is the ratio of specific heats, has been invoked.

The equations (8) are known as the linearized compressible Navier-Stokes equations.
WhenKij ≡ 0 for i, j = 1, 2, 3, (8) reduces to the linearized compressible Euler system.



2.2. Symmetrized Linearized Compressible Navier-Stokes Equations

A key property of the incompletely parabolic system (8), onethat is critical to the
formulation of a stable Galerkin ROM for these equations, isthat it is symmetrizable [12,
11]. In other words, there exists a symmetric positive definite matrixH ≡ H(q) so that the
following two properties hold:

1. The convective flux matrices

AS ≡ HAi, for i = 1, 2, 3, (16)

are all symmetric.

2. The following augmented viscosity matrix

KS ≡





HK11 HK12 HK13

HK21 HK22 HK23

HK31 HK32 HK33



 , (17)

is symmetric positive semi-definite (vTKSv ≥ 0 for all vectorsv).

To demonstrate that the system (8) is symmetrizable, a symmetrizer matrixH such
that the two properties listed above are satisfied is exhibited. Consider the following matrix:

H ≡










ρ̄ 0 0 0 0
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0 0 ρ 0 0

0 0 0 ρ̄R
T̄ (γ−1)

0

0 0 0 0 RT̄
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
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Let AS
i ≡ HAi andKS

ij ≡ HKij denote the symmetrized convective and viscous flux matri-
ces respectively, fori, j = 1, 2, 3. Some linear algebra reveals that, withH defined by (18),
these matrices are given by:
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21 ≡




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0 0 0 0 0
0 0 0 0 0
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S
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
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S
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,
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K
S
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
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


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


, K
S
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
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

0 0 0 0 0
0 0 µ 0 0
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0 0 0 0 0









, K
S
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





µ 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 κ

T̄
0

0 0 0 0 0









.

(22)

It is clear that the convective flux matricesAS
i (19) are symmetric, fori = 1, 2, 3. The reader

may verify that the augmented symmetrized viscous flux matrix KS (17), with submatrices
given by (20)–(22), is symmetric positive semi-definite.

It is noted that any matrixH that symmetrizes the viscous equations (8) is also a valid
symmetrizer for the inviscid counterpart of these equations ((8) with Kij ≡ 0 for i, j =

1, 2, 3). The converse isnot in general true, however. That is, a symmetrizer for the linearized
compressible Euler equations is not necessarily a symmetrizer for the linearized compressible
Navier-Stokes equations.

3. THE POD/GALERKIN APPROACH TO MODEL REDUCTION

Before describing the proposed model reduction approach, abrief overview of the
POD/Galerkin method for reducing the order of a complex physical system governed by a
general set of PDEs is provided. The approach consists of twosteps, summarized in Sections
3.1 and 3.2 below.

3.1. Calculation of a Reduced Basis via the Proper Orthogonal Decomposition (POD)

The first step in the POD/Galerkin method for model reductionis the calculation of a
reduced basis using the POD of an ensemble of realizations from a high-fidelity simulation. In
effect, this step involves the transfer of kinematic information from a high-fidelity simulation
to a relatively small number of modes. Discussed in detail inLumley [14] and Holmeset al.
[15], POD is a mathematical procedure that, given an ensemble of data, constructs a basis for
that ensemble that is optimal in the sense that it describes more energy (on average) of the
ensemble than any other linear basis of the same dimensionM . In the present context, the
ensemble{uk(x) : k = 1, . . . , K} is a set ofK instantaneous snapshots of a high-fidelity
numerical solution field. Mathematically, POD seeks anM-dimensional (M << K) sub-
spaceHM(Ω) spanned by the set{φi} such that the projection of the difference between the
ensembleuk and its projection ontoHM(Ω) is minimized on average. It is a well known result
[1, 15, 10, 9] that the solution to this optimization problemreduces to the eigenvalue problem
Rφ = λφ whereR ≡ 〈uk ⊗ uk〉 is a self-adjoint and positive semi-definite operator. It can
be shown [15, 14] that the set ofM eigenfunctions, or POD modes,{φi : i = 1, 2, . . . , M}

corresponding to theM largest eigenvalues ofR is precisely the set of{φi} that solves the
aforementioned POD optimization problem. Given this basis, the numerical ROM solution



uM can be represented as a linear combination of POD modes

uM(x, t) =

M∑

j=1

aj(t)φj(x), (23)

where theaj(t) are the so-called ROM coefficients (or modal amplitudes) to be solved for in
the ROM.

3.2. Galerkin Projection of Governing PDEs onto Reduced Basis Modes

The second step in constructing a ROM involves projecting the governing system of
PDEs onto the reduced basis{φi} in some appropriate inner product, denoted generically (for
now) by(·, ·). In this step, the full-system dynamics are effectively translated to the implied
dynamics of the POD modes. If the governing system of equations for the state variable vector
u has the form

∂u

∂t
= Lu + N2(u, u) + N3(u, u, u), (24)

whereL is a linear differential operator, andN2 andN3 are (non-linear) quadratic and cubic
operators respectively, then the Galerkin projection of (24) onto the POD modeφj for j =

1, 2, ..., M is
(

φj,
∂uM

∂t

)

= (φj,LuM) + (φj,N2(uM , uM)) + (φj,N3(uM , uM , uM)) . (25)

Substituting the POD decomposition ofuM (23) into (25) and applying the orthonormality
property of the basis functionsφi in the inner product(·, ·) gives a set of time-dependent
ODEs in the modal amplitudes:

da
dt

≡ ȧj =
∑M

l=1 al(φj,L(φl)) +
∑M

l=1

∑M
m=1 alam(φj,N2(φl, φm))

+
∑M

l=1

∑M
m=1

∑M
n=1 alaman(φj ,N3(φl, φm, φn)),

(26)

for j = 1, 2, . . . , M . This ROM dynamical system accurately describes the flow dynamics of
the full system of PDEs for some limited set of flow conditions.

3.3. Continuous vs. Discrete Projection

As suggested by equations (25)-(26) and as will become apparent in Section 4, the ap-
proach proposed in the present work, termed the “continuousprojection” approach, is based
on a Galerkin projection of thecontinuousgoverning PDEs onto the reduced basis modes.
Many POD/Galerkin applications are based on the so-called “discrete projection”, in which
the semi-discrete representation of the governing equations is projected, and numerical analy-
sis proceeds from the perspective of a dynamical system of ODEs. The continuous projection
approach has the advantage that the ROM solution behavior can be examined using methods
that have been used for numerical analysis of spectral [6, 5]and finite volume [4, 7] approxi-
mations to PDEs. This makes possible ana priori stability analysis using the energy method
(Theorem 4.1). Note that, in the continuous projection approach, boundary condition terms
present in the discretized equation set arenot in general inherited by the ROM, and therefore
may need to be implemented in the ROM (Section 4.2).



4. A STABILITY-PRESERVING POD/GALERKIN MODEL REDUCTION APPROACH
FOR LINEARIZED COMPRESSIBLE FLOW

The discussion of the Galerkin projection step of the model reduction in Section 3.2
has assumed a generic inner product(·, ·). In the classical POD/Galerkin method, this inner
product is taken to be theL2(Ω) inner product. For the incompressible Navier-Stokes equa-
tions, this choice of inner product is appropriate, and willgive rise to a stable POD/Galerkin
ROM. The reason for this is that, for this equation set, the solution vector is the velocity vec-
tor u, and||u||L2(Ω) is a measure of the global kinetic energy in the domainΩ. TheL2(Ω)

inner product is therefore physically sensible for these equations: the POD modes optimally
represent the kinetic energy present in the ensemble from which they are generated.

The stability of the Galerkin projection of a PDE system in a given inner product can
be studied using the energy method, reviewed briefly here. Consider the following Cauchy
problem for a scalar PDE

∂u
∂t

= Lu, x ∈ R
n, t ≥ 0,

u(x, 0) = f(x),
(27)

whereL is a linear spatial differential operator. The basic idea ofthe energy method [12, 37]
is to define the energy of a solutionu to (27) in an inner product(·, ·)E with corresponding
norm|| · ||E as

E ≡ ||u||E, (28)

and attempt to derive a bound of the form

1

2

d

dt
||u||E ≤ α||u||E, α ∈ R. (29)

If such a bound can be shown, the operatorL is semi-bounded with respect to the inner product
(·, ·)E, and the Cauchy problem (27) is well-posed. Consequently, aGalerkin approximation
to u, denoted byuN , will satisfy the energy estimate

1

2

d

dt
||uN ||E ≤ α||uN ||E, α ∈ R, (30)

so that, by Gronwall’s lemma,

||uN(x, t)||E ≤ eαt||uN(x, 0)||E, ∀t ≥ 0. (31)

The practical implication of the result (31) is that if the energy inner product(·, ·)E is selected
for the Galerkin approximation, the resulting numerical solution will be bounded in a way that
is consistent with the behavior of the exact solutions of theoriginal PDE, i.e., it will be stable.

It turns out that theL2(Ω) inner product does not correspond to an energy integral for
equations ofcompressibleflow, such as the ones considered herein [1, 2, 3, 8]. The practical
implication of this fact is that if theL2(Ω) inner product is selected as the inner product
defining the projection, the resulting ROM will not satisfy the energy conservation relation
implied by the governing equations, and may exhibit an instability that is inconsistent with
the physics inherent in the governing continuous PDEs [16].An alternate inner product, in
particular, one thatisan energy inner product for the equations of compressible flow, is sought.



4.1. Stability-Preserving Symmetry Inner Product for the Galerkin Projection Step

As will be proven in Section 4.3, the energy inner product forthe system (8) is the
so-called “symmetry”, or(H, Ω)–, inner product, defined by:

(v1,v2)(H,Ω) ≡

∫

Ω

vT
1 Hv2 dΩ, (32)

for v1,v2,v ∈ R
5. The matrixH is precisely the matrix that symmetrizes the linearized

compressible Navier-Stokes system (8). Projecting the (continuous) system of PDEs onto the
kth reduced basis mode fork = 1, ..., M in the(H, Ω)–inner product gives:

∫

Ω

φT
k Hq′

tdΩ +

∫

Ω

φT
k AS

i q
′

,idΩ −

∫

Ω

φT
k [KS

ijq
′

,j],idΩ = 0, (33)

whereM is the total number of reduced basis modes. The norm corresponding to the inner
product (32), referred to as the(H, Ω)–norm, is given by:

||v||(H,Ω) ≡
√

(v,v)(H,Ω). (34)

(34) defines a valid norm, as the symmetrizer matrixH is symmetric positive definite.

4.2. Stability-Preserving Weak Implementation of Boundary Conditions

As mentioned in Section 3.3, a Galerkin ROM based on the continuous projection
approach does not necessarily inherit boundary condition terms present in the discretized
equation set from which the ROM is constructed. An efficient implementation of the boundary
conditions for a Galerkin ROM is through a weak formulation.For illustration purposes,
attention is restricted to a solid-wall boundary of the domain Ω, on which the no-slip and
adiabatic wall boundary conditions (5) are imposed. First,the system of PDEs (8) is projected
onto thekth reduced basis mode in the(H, Ω)–inner product, as done in (33). Next, the
viscous terms in (33) are integrated by parts:

∫

Ω

φT
k (KS

ijq
′

,i),jdΩ = −

∫

Ω

φT
k,jK

S
ijq

′

,idΩ +

∫

∂Ω

φT
k KS

ijq
′

,injdΓ

︸ ︷︷ ︸

≡IW
k

. (35)

Finally, the vector specifying the boundary condition is inserted into the boundary integral
over∂Ω that arises. Some simple linear algebra reveals that

KS
ijq

′

,inj =









[(2µ + λ)u′

1,1 + µ(u2,2 + u3,3)]n1 + (λu′

2,1 + µu′

1,2)n2 + (λu′

3,1 + µu′

1,3)n3

(µu′

2,1 + λu′

1,2)n1 + [µ(u′

1,1 + u′

3,3) + (2µ + λ)u′

2,2]n2 + (λu′

3,2 + µu′

2,3)n3

(µu′

3,1 + λu′

1,3)n1 + (µu′

3,2 + λu′

2,3)n2 + [µ(u′

1,1 + u′

2,2) + (2µ + λ)u′

3,3]n3
κ
T̄
∇T ′ · n

0









.

(36)
Substituting the adiabatic wall boundary condition (5) andassuming the reduced basis modes
φk satisfy the no-slip condition on∂ΩW , it follows that

φT
k KS

ijq
′

,inj = 0. (37)



Substituting (37) into (35), the following Galerkin-projected ROM formulation with boundary
conditions is obtained:

∫

Ω

φT
k Hq′

tdΩ +

∫

Ω

φT
k AS

i q
′

,idΩ +

∫

Ω

φT
k,iK

S
ijq

′

,jdΩ = 0. (38)

The ROM matrix problem is obtained by inserting the modal decompositionq′ ≈ q′

M =
∑M

i=1 ai(t)φi(x) into (38) (Section 5.1).

4.3. Proof of Energy-Stability of the Symmetry Inner Product

The present section provides a proof of the energy-stability of the Galerkin projection
step of the model reduction procedure in the(H, Ω)–inner product, assuming a weak imple-
mentation of the boundary conditions (5) following the procedure outlined in Section 4.2. The
far-field boundary condition on∂ΩF is not considered as it is stable by construction (proven
in [8]).

Theorem 4.1. Consider a bounded domainΩ ⊂ R
3 with Lipshitz-continuous boundary solid-

wall boundary∂ΩW . Assume the modesφj and the base flow satisfy a no-slip condition on
∂ΩW (the first condition in(5)). Then the Galerkin projection of(8) with boundary conditions
(5) is “energy-stable” in the symmetry inner product(32), with energy estimate

||q′(·, T )||(H,Ω) ≤ exp

{
1

2
βT

}

||q′(·, 0)||(H,Ω), (39)

whereβ is an upper bound on the eigenvalues of the matrix2

B ≡ H−T/2∂(HAi)

∂xi
H−1/2. (40)

Proof. By Definition 2.11 in [37] (repeated in the Appendix), to showstability of the Galerkin
projection of (8) in the(H, Ω)–inner product, it is sufficient to show that the energy associated
with this projection is semi-bounded in the associated(H, Ω)–norm. Defining the energy as

E ≡ ||q′||(H,Ω), (41)

the following bound ondE
dt

is obtained:

1
2

d
dt
||q′||(H,Ω) = 1

2
d
dt

∫

Ω
[q′]T HqdΩ

=
∫

Ω
[q′]THq′

tdΩ
= −

∫

Ω
[q′]THAiq,idΩ +

∫

Ω
[q′]T H[Kijq

′

,i],jdΩ

= −1
2

∫

Ω
∂

∂xi
([q′]THAiq

′dΩ)dΩ + 1
2

∫

Ω
[q′]T ∂(HAi)

∂xi
q′dΩ −

∫

Ω
[q′

,j ]
THKijq

′

idΩ

+
∫

∂Ω
[q′]TKS

ijq
′

injdΓ

= −1
2

∫

∂Ω
[q′]TAS

i niq
′dΓ + 1

2

∫

Ω
[q′]T ∂(HAi)

∂xi
q′dΩ −

∫

Ω
[q′

,j]
THKijq

′

idΩ

+
∫

∂Ω
[q′]TKS

ijq
′

injdΓ,
(42)

2The shorthand(M1/2)T ≡ M
T/2 is employed, whereM is a positive definite matrix andM1/2 is its square

root factor, so thatM = M
T/2

M
1/2.



In going from lines 3 to 4 of (42), the symmetry property of theAS
i matrices has been em-

ployed. Assuming the base flow satisfies a no-slip boundary condition at the wall, so that
ū · n = 0,

AS
i niq

′ =









0 0 0 ρ̄Rn1 RT̄n1

0 0 0 ρ̄Rn2 RT̄n2

0 0 0 ρ̄Rn3 RT̄n3

ρ̄Rn1 ρ̄Rn2 ρ̄Rn3 0 0
RT̄n1 RT̄n2 RT̄n3 0 0

















u′

1

u′

2

u′

3

T ′

ρ′









. (43)

Assuming that the reduced basis modes satisfy the no-slip boundary condition, it follows that

[q′]TAS
i niq

′ = 0, (44)

on ∂ΩW . Substituting (44) and (37) into (42), and using the fact that KS (17) is positive
semi-definite, one has that:

d

dt
||q′||(H,Ω) ≤

∫

Ω

[q′]T
∂(HAi)

∂xi

q′dΩ. (45)

Applying Gronwall’s lemma to (45) gives (40).

The energy estimate (40) establishes the semi-boundednessof the governing spatial
differential operator defined in (8) in the(H, Ω)–inner product. A direct consequence of this
result is that the Galerkin projection step using the symmetry inner product is guaranteed to
produce a stable ROM, provided well-posed (stability-preserving) boundary conditions are
prescribed.

It is noted that the proof of Theorem 4.1 holds for the linearized compressible Euler
equations – that is, equations (8) withµ = λ = κ = 0. The symmetrization presented in this
paper for the linearized compressible Navier-Stokes equations thus encompasses the viscous
as well as inviscid case, and is hence more general that the original symmetrization approach
developed for the linearized compressible Euler equations[1, 2, 3, 8]. For the inviscid variant
of (8), care must be taken to implement the appropriate boundary conditions (no-penetration at
a solid wall (6)) in a way that preserves the stability of the ROM. For a detailed discussion of
a stability-preserving implementation of inviscid boundary conditions, the reader is referred
to [8].

5. NUMERICAL EXPERIMENTS

The model reduction based on the POD method and Galerkin projection of the continu-
ous linearized compressible Navier-Stokes equations in the symmetry inner product described
in the previous sections is now evaluated on two test cases. Emphasis is placed on reproducing
a given CFD solution for a single set of flow conditions in a stable and accurate fashion. This
is viewed as an essential prerequisite for applying the method to more complex situations, and
employing the ROM in a predictive setting.



5.1. Implementation of the ROM

Prior to evaluating the ROM’s performance, some key detailsof the implementation of
the ROM are described. The ROM can be thought of as consistingof two stages: an “offline”
construction stage, and an “online” solution stage.

In the offline stage of the model reduction, the ROM matrix problem is assembled.
Substituting the modal decompositionq′ ≈ q′

M =
∑M

m=1 am(t)φm into (38) and employing
the fact that the POD modes are by construction orthonormal in the (H, Ω)–inner product
yields the following linear dynamical system

ȧ = Ca, (46)

where

Ckm = −

∫

Ω

φT
k AS

i φm,idΩ −

∫

Ω

φT
k,iK

S
ijφm,jdΩ, (47)

for k, m = 1, ..., M , with M denoting the number of reduced basis modes. The offline stageof
the ROM is implemented in a C++ code that uses distributed vector and matrix data structures
and parallel eigensolvers from the Trilinos project [39]. Given a set of snapshots from a high-
fidelity simulation stored at the nodes of an underlying mesh, this code computes a POD basis
by solving the POD eigenvalue problem described in Section 3.1 using eigensolvers from
the TrilinosRBGen library. Within this code, the POD basis functions are interpolated using
piece-wise linear finite element shape functions, and the continuous Galerkin projection of the
governing equations onto these POD modes is performed. For the Galerkin projection step of
the model reduction, a numerical quadrature operator that exactly integrates the relevant inner
products (47) is constructed with the help of thelibmesh finite element library [40].

Although computationally intensive, as it requiresO(N) operations, whereN is the
number of grid points in the high-fidelity simulation, the offline stage of the model reduction
is performed only a single time to yield theM × M ROM dynamical system matrixC (47).
Given this matrix, the online stage of the ROM begins. In thisstage, the ROM dynamical
system (46) is integrated in time using a classical time-integration scheme, such as the Runge-
Kutta method. In contrast to the offline stage of the model reduction, the online stage is
fast, cheap, and can be performed for on-the-spot computations, as it scales likeM , where
M << N is the small number of reduced basis modes.

The approach outlined above, described in more detail in [1], ensures that the stability
results of the analysis in Section 4.3 are preserved by the discrete implementation. Moreover,
it makes the ROM potentially compatible with any CFD code that can output a mesh and
snapshot data stored at the nodes of this mesh.

For the results presented in the following two subsections,the high-fidelity fluid simu-
lation data were generated using a Sandia in-house finite volume flow solver known as SIGMA
CFD. This code is derived from LESLIE3D [41], a Large Eddy Simulations (LES) flow solver
originally developed in the Computational Combustion Laboratory at the Georgia Institute of
Technology. LESLIE3D solves the turbulent compressible flow equations using an explicit
2-4 MacCormack scheme. A hybrid scheme coupling the MacCormack scheme to flux dif-
ference splitting schemes is employed to capture shocks. For parallel execution, a Schwartz
overlap algorithm with ghosting is used, with the MPI library providing routines for exchang-
ing information in the overlap regions. For a detailed description of the schemes and models



implemented within LESLIE3D, the reader is referred to [43,44]. The SIGMA CFD flow
solver is an extension of LESLIE3D that includes the following major modifications:

1. Extension of the time marching scheme options to include an implicit time marching
scheme.

2. Addition of a higher order reconstruction based Roe flux scheme and a low dissipation
skew symmetric scheme.

3. Addition of RANS turbulence models:k − ǫ, k − ω and SST turbulence models in
addition to the one-equation subgrid kinetic energy based LES models in LESLIE3D.

4. Implementation of SST-DES and Hybrid RANS-LES models.

5. Implementation of a wall layer model for LES applications.

In addition to these changes, various code cleanups, simplification of the data structures, gen-
eralization of the parallel decomposition, as well as porting to large clusters and thousands of
processors have been carried out by the authors. Various boundary conditions necessary for
the range of applications of interest to Sandia have also been implemented in SIGMA CFD.

The ROM dynamical systems (46) were advanced forward in timeusing a fourth order
explicit Runge-Kutta scheme, implemented in MATLAB, with the same time step that was
used in the CFD simulation used to generate the ROM.

5.2. Inviscid Pressure Pulse

The first test case is that of a two-dimensional (2D) inviscidacoustic pressure pulse in
the following prismatic domain:Ω = (−1, 1)×(−1, 1)×(−1,−0.9) ∈ R

3. For this problem,
the base flow was uniform, with the following values:

p̄ = 101, 325 Pa
T̄ = 300 K

ρ̄ = p̄
RT

= 1.17 kg/m3

ū1 = ū2 = ū3 = 0.0 m/s
c̄ = 348.0 m/s.

(48)

In (48), c̄ ≡
√

γRT̄ is the mean speed of sound. The problem was initialized with apressure
pulse in the middle of the domain:

p′(x; 0) = 141.9e−10(x2+y2),

ρ′(x; 0) = p′(x;0)

RT̄
,

T ′(x; 0) = 0,
u′

1(x; 0) = u′

2(x; 0) = u′

3(x; 0) = 0.

(49)

In terms of the mean values, the amplitude of the initial pressure pulse (49) was0.001ρ̄c̄2. The
computational grid for this test case was composed of 3362 nodes, cast into 9600 tetrahedral
finite elements within the ROM code. A no-penetration (slip wall) boundary condition (6)
was imposed on all six sides of the domain. The high-fidelity CFD simulation from which



the ROM was generated was performed until timeT = 0.01 seconds. During this simula-
tion, the initial pressure pulse (49) reflected from the walls of the domain a number of times.
Snapshots from this simulation were saved every5 × 10−5 seconds, to yield a total of 200
snapshots. These snapshots were employed to construct a 20 mode POD basis. Two different
procedures were used to generate a fluid ROM for this problem:the POD/Galerkin method
with the (H, Ω)– (symmetry) inner product, and the POD/Galerkin method with the classi-
cal L2 inner product. Using both the symmetry and theL2 inner product, the POD modes
captured essentially 100% of the snapshot energy.

Figure 1 shows a time history of the first two ROM modal amplitudes (circles) com-
pared to the projection of the full CFD simulation onto the first two POD modes (solid lines)
for the symmetry (a) andL2 (b) ROMs. Mathematically, this figure compares as a functionof
time t:

ai(t) vs. (q′

CFD, φi)(H,Ω) , i = 1, 2, (50)

whereq′

CFD is the high-fidelity CFD solution from which the ROMs were constructed. The
reader may observe good agreement between the symmetry ROM and the full simulation
(Figure 1(a)) for the time interval considered. In contrast, agreement between theL2 ROM
and the full simulation is reasonable only until approximately t = 0.005 seconds (Figure
1(b)). The oscillations in theL2 ROM modal amplitudes observed fort > 0.008 seconds
suggest the presence of an instability in theL2 ROM.
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Figure 1. Time history of modal amplitudes for inviscid pressure pulse problem

Figures 2–4 compare the CFD pressure field (a) with the field reconstructed from the
symmetry (b) andL2 (c) ROM solutions atz = −1 and timest = 4.5 × 10−4, 2.95 × 10−3

and7.95 × 10−3 seconds. At timet = 4.5 × 10−4 seconds, both the symmetry andL2 ROM
solutions are in good agreement with the high-fidelity solution (Figure 2). At the later times,
t = 2.95 × 10−3 and7.95 × 10−3 seconds, there is a good qualitative agreement between the
high-fidelity solution and the symmetry ROM solution (Figures 3–4(a), (b)). The same cannot
be said of theL2 ROM solution at these later times, however. It is apparent from Figure 4(c)
that theL2 ROM solution has blown up byt = 7.95 × 10−3 seconds, which confirms the
instability of the 20 modeL2 ROM suggested in Figure 1.
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Figure 2. Pressure field at timet = 4.5 × 10−4 seconds

5.3. Viscous Laminar Cavity

The second test case is that of a Mach 0.6 viscous laminar flow over a cavity in aT–
shaped domainΩ = [(−2.9460, 4.5857)× (−0.4586, 4.5857)× (0, 0.4586)]\[(−2.9460, 0)×

(−0.4586, 0) × (0, 0.4586)]\[(0.9171, 4.5857)× (−0.4586, 0) × (0, 0.4586)]. The flow con-
ditions correspond to case L2 in [38]. The free stream pressure was25 Pa, the free stream
temperature was300 K, and the free stream velocity was 208.8 m/s. The free streampressure
was kept low to keep the Reynolds number of the flow low. The viscosity and thermal diffu-
sivity coefficients wereµ = 1.846 × 10−5 kg/(m·s) andκ = 2.587 × 10−2 m2/s respectively.
At the inflow boundaryx = −2.9460, a value of the velocity and temperature that is above
the free stream values was specified. The flow at the cavity walls (x = −0.4586, x = 0.9172,
y = 0, z = 0, z = 0.4586) was assumed to be adiabatic and to satisfy a no-slip condition
(5). The remaining outflow boundaries (y = 4.5857, x = 4.5857) were open, and a far-field
boundary condition that suppresses the reflection of waves into the computational domain
was implemented here. The simulation was started by initializing the flow in the cavity to
have a zero velocity, free stream pressure, and temperature. The region above the cavity was
initialized to free stream conditions and the flow was allowed to evolve. The snapshopts for
constructing the ROM were collected once statistically stationary conditions were reached in
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Figure 3. Pressure field at timet = 2.95 × 10−3 seconds

the cavity. This was determined by examining the pressure fluctuations at several locations on
the cavity walls.

In the high-fidelity viscous laminar cavity simulation, thefull non-linear Navier-Stokes
equations (1) in the laminar regime were solved. The discretized domain consisted of 343,408
nodes, which were cast as 1,020,000 tetrahedral finite elements within the ROM code. The
high-fidelity CFD simulation was run until timeT = 0.2 seconds. Snapshots from this sim-
ulation were saved every2 × 10−3 seconds, to yield a total of 101 snapshots. From these
snapshots, a 30 mode POD basis was constructed using theL2 as well as the symmetry inner
product (Figure 5). As for the inviscid pulse problem, thesemodes captured essentially 100%
of the snapshot energy for both ROM approaches.

Unlike the inviscid pressure pulse problem considered in Section 5.2, the viscous lam-
inar cavity problem is inherently non-linear, and does not possess a natural steady base flow
component. In constructing the ROM, the base flow was taken tobe the average of the snap-
shots. The full compressible Navier-Stokes equations (1) were linearized around this steady
base flow to yield the linear system (8), and this system was subsequently projected onto the
POD modes to yield the ROM dynamical system. In this approach, the non-linear dynamics
of the flow (vortical structures, for the viscous laminar cavity flow problem) are captured in
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Figure 4. Pressure field at timet = 7.95 × 10−3 seconds

the POD reduced basis modes (Figure 5), but not in the equations projected onto these reduced
basis modes.

Since a ROM based on linearized equations cannot be expectedto reproduce all the
non-linear dynamics in the solution of an inherently non-linear problem such as the viscous
laminar cavity problem, some discussion of what the ROM can and cannot be expected to
capture is in order. The physics of the cavity flow are determined by the shear layer over the
cavity. As the shear layer separates from the leading edge ofthe cavity, instabilities develop
in the separated shear layer. These instabilities grow non-linearly to form vortices convecting
down the shear layer. This process is an inviscid instability growth process and arises due to
the non-linear terms in the convective part of the Navier-Stokes equations. Since the ROM
is built using a linearized form of the Navier-Stokes equations, the ROM in its current form
cannot be expected to capture accurately this process. Further downstream, the vortices im-
pinge on the aft wall of the cavity giving rise to pressure waves that are propagated upstream
through the free stream and the cavity. Depending upon the Reynolds number (and hence
the free stream dynamic pressure), these waves can range from linear to non-linear. The lin-
ear waves (as is expected in this low Reynolds number case) should be accurately captured
by the ROM. Since the pressure fluctuations on the cavity walls are due to a combination of



(a) Mode 1 (52.2% energy) (b) Mode 2 (15.5% energy)

(c) Mode 3 (13.8% energy) (d) Mode 4 (9.4% energy)

Figure 5. First four most energetic POD modes computed in thesymmetry inner product for
the viscous laminar cavity problem

these waves and those generated by the shear layer vortices,it is expected that only the linear
reflected waves will be captured by the ROM.

Figure 6 compares the CFDu1 velocity field (a) with the field reconstructed from the
symmetry (b) andL2 (c) ROM solutions at timet = 0.024 seconds andz = 0. Figure 7
compares the CFDu2 velocity field (a) with the field reconstructed form the symmetry (b)
andL2 (c) ROM solutions at a later time,t = 0.076 seconds andz = 0. The reader may
observe that there is a reasonable qualitative agreement between both ROM solutions and the
high-fidelity solution. The ROMs are not able to capture in full detail the inherently non-linear
vortical structures present in the high-fidelity solution,but this is to be expected of a model
based on linearized flow equations.

Figure 8 plots the real part of each eigenvalue of the30 × 30 ROM dynamical system
matrixC for the 30 mode symmetry andL2 ROMs. The plot is ana posterioricheck of the
stability of each ROM. The ROM is stable if the maximum real part of the eigenvalues of the
ROM system matrix is non-positive. Figure 8 confirms that the30 mode symmetry ROM is
stable. Although the 30 modeL2 ROM is not observed to go unstable for this test case, it is
clear from Figure 8 the stability of theL2 ROM is not guaranteed, as its system matrix has
eigenvalues with positive real parts.



(a) CFD (b) 30 mode symmetry ROM

(c) 30 modeL2 ROM

Figure 6. Velocity fieldu1 at timet = 0.024 seconds

6. CONCLUSIONS

A method for constructing stable reduced order models for compressible flow based on
the POD/Galerkin approach has been developed and tested. Attention is focused on extending
the earlier analysis and model reduction methodology [1, 2,3, 8] to the linearized compress-
ible Navier-Stokes equations, which were not considered inpast work by the authors. For
these equations, a symmetry inner product is defined such that the application of the Galerkin
projection method in this inner product is guaranteed to produce stable ROMs for the gov-
erning equations. The proposed model reduction approach isevaluated on two test cases: the
problem of an inviscid pressure pulse in a uniform base flow, and a laminar viscous cavity
problem. For the first test case, there is a better qualitative agreement between the symmetry
ROM solution and the high-fidelity solution, than theL2 ROM solution and the high-fidelity
solution. Moreover, theL2 ROM is observed to exhibit an instability, whereas the symmetry
ROM remains stable for all times considered. The authors’ objective in considering the sec-
ond test case is to study the viability of a model reduction approach in which the non-linear
dynamics of the flow are captured in the POD reduced basis modes, but not in the (locally
linearized) equations projected onto these reduced basis modes. Results for this test case are
encouraging: there is a reasonable qualitative agreement between the ROM solutions and the



(a) CFD (b) 30 mode symmetry ROM

(c) 30 modeL2 ROM

Figure 7. Velocity fieldu2 at timet = 0.076 seconds
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problem

high-fidelity solution. Future work will focus on incorporating into the ROM equations non-



linear terms in a stability-preserving and computationally tractable way. Future work will also
include a study of the predictive capabilities of the proposed ROM for long-time simulations,
as well as an investigation of the ROM’s robustness with respect to changes in the parameter
space.

APPENDIX

Consider the following semi-discrete problem:

duj

dt
= Quj + Fj , j = 1, 2, . . . , N − 1,

Bhu = g(t),
uj(0) = fj , j = 1, 2, . . . , N,

(51)

whereQ is a discretizing operator,Fj andfj are the discretized version ofF andf respec-
tively, andBhu denotes the complete set of discretized boundary conditions. Let || · ||h be a
discrete norm.

Definition 2.11 in [37]: The semi-discrete IBVP (51) isstableif there is a unique solution
satisfying

||u(·, t)||h ≤ Keβt||f(·)‖|h, (52)

whereK andβ are constants independent off andg.
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